Exploration of Deinococcus-Thermus molecular diversity by novel group-specific PCR primers
نویسندگان
چکیده
The deeply branching Deinococcus-Thermus lineage is recognized as one of the most extremophilic phylum of bacteria. In previous studies, the presence of Deinococcus-related bacteria in the hot arid Tunisian desert of Tataouine was demonstrated through combined molecular and culture-based approaches. Similarly, Thermus-related bacteria have been detected in Tunisian geothermal springs. The present work was conducted to explore the molecular diversity within the Deinococcus-Thermus phylum in these extreme environments. A set of specific primers was designed in silico on the basis of 16S rRNA gene sequences, validated for the specific detection of reference strains, and used for the polymerase chain reaction (PCR) amplification of metagenomic DNA retrieved from the Tataouine desert sand and Tunisian hot spring water samples. These analyses have revealed the presence of previously undescribed Deinococcus-Thermus bacterial sequences within these extreme environments. The primers designed in this study thus represent a powerful tool for the rapid detection of Deinococcus-Thermus in environmental samples and could also be applicable to clarify the biogeography of the Deinococcus-Thermus phylum.
منابع مشابه
Distinctive protein signatures provide molecular markers and evidence for the monophyletic nature of the deinococcus-thermus phylum.
The Deinococcus-Thermus group of species is currently recognized as a distinct phylum solely on the basis of their branching in 16S rRNA trees. No unique biochemical or molecular characteristics that can distinguish this group from all other bacteria are known at present. In this work, we describe eight conserved indels (viz., inserts or deletions) in seven widely distributed proteins that are ...
متن کاملIdentification of signature proteins that are distinctive of the Deinococcus-Thermus phylum.
The members of the Deinococcus-Thermus phylum, which include many species that are resistant to extreme radiation, as well as several thermophiles, have been recognized solely on the basis of their branching patterns in 16S rRNA and other phylogenetic trees. No biochemical or physiological characteristic is currently known that is unique to this group of species. To identify genes/proteins that...
متن کاملMetagenomic Evaluation of Bacterial and Archaeal Diversity in the Geothermal Hot Springs of Manikaran, India
Bacterial and archaeal diversity in geothermal spring water were investigated using 16S rRNA gene amplicon metagenomic sequencing. This revealed the dominance of Firmicutes, Aquificae, and the Deinococcus-Thermus group in this thermophilic environment. A number of sequences remained taxonomically unresolved, indicating the presence of potentially novel microbes in this unique habitat.
متن کاملIdentification and properties of the Deinococcus grandis and Deinococcus proteolyticus single-stranded DNA binding proteins (SSB).
To study the biochemical properties of SSB's from Deinococcus grandis (DgrSSB) and Deinococcus proteolyticus (DprSSB), we have cloned the ssb genes obtained by PCR and have developed Escherichia coli overexpression systems. The genes consist of an open reading frame of 891 (DgrSSB) and 876 (DprSSB) nucleotides encoding proteins of 296 and 291 amino acids with a calculated molecular mass of 32.2...
متن کاملApproach to Analyze the Diversity of Myxobacteria in Soil by Semi-Nested PCR-Denaturing Gradient Gel Electrophoresis (DGGE) Based on Taxon-Specific Gene
The genotypic diversity of insoluble macromolecules degraded myxobacteria, provided an opportunity to discover new bacterial resources and find new ecological functions. In this study, we developed a semi-nested-PCR-denaturing gradient gel electrophoresis (DGGE) strategy to determine the presence and genotypic diversity of myxobacteria in soil. After two rounds of PCR with myxobacteria-specific...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2013